
Homework 2 
CS474 - Fall 2019 

Description 
In this homework, you will use Java’s reflection to create an object and class inspector.  Your 
inspector should answer correctly a number of queries, specified by implementing the provided 
Inspector interface.  This document describes the interface in detail. 

Due Date and Late Policy 
● This homework is due on October 19 (Saturday) by 5pm CST. 
● Homeworks delivered by October 20 (Sunday) by 5pm CST will have a 10% penalty. 
● Homeworks delivered by October 21 (Monday) by 5pm CST will have a 25% penalty. 
● No homeworks will be accepted after October 21 by 5pm CST. 

Homework 2 will use Github to keep your code and deliver the homework. Your grade is the                 
grade of the most recent commit in your repository, subject to penalties as described above.               
The date of the most recent commit will be used to determine the penalty to apply, if any. 

Java Reflection 
To complete this homework, you must use the Java reflection framework, located in package 
java.lang.reflect.  How to use the Java reflection was covered in class.  The startup code 
provided is listed in this document under Appendix A, Appendix B, Appendix C, Appendix D, 
and Appendix E. 

Inspector Interface 
For this homework, you will have to implement the Inspector interface; which will be provided for 
you to start the homework.  You can only modify the file that implements the Inspector 
interface. This interface consists of 5 methods: 

1. findClass: Finds a class and returns an instance of ClassInfo if the class exists. 
Otherwise returns empty. 

2. fillInFields:  Fills in all the information for fields on the provided ClassInfo instance. 
3. fillInMethodsAndConstructors:  Fills in all the information about methods and 

constructors on the provided ClassInfo instance. 
 

(continues on the next page) 



4. readWriteField:  Reads or writes a field, specified by the given instance of FieldInfo. 
○ An optional object where to read/write fields  
○ An optional new value to write (empty means read) 
○ A flag to force the operation on fields without sufficient permission (e.g., writing to 

a final field or reading from a private field). 
○ Special return values: 

■ Reading null:  The Inspector should return an optional with 
Inspector.NULL inside 

■ Successful write:  The Inspector should return an optional with 
Inspector.SUCCESS inside 

5. invokeMethodOrConstructor: Invokes a method or a constructor 
○ The optional receiver contains the object on which the method will be invoked on 

(empty means either static field or constructor). 
○ A list of objects for the arguments 
○ A flag to force the invocation on methods/constructors without sufficient 

permission (e.g., private methods or private constructors). 
○ For methods that return void, the Inspector should return an optional with 

Inspector.NULL inside 

Format of Class Names 
All class names should be represented by their fully qualified name.  For instance, class 
String should be represented as java.lang.String. 
Primitive types should be represented as follows: int, long, float, double, short, char, 
byte, boolean. 

Overridden Methods 
Overridden methods should only appear once in fillInMethods.  For instance, if a class defines 
a method toString, then the method Object.toString should not be present in the methods of 
the class.  A method is overridden if it has the same name, and the same number and type of 
arguments as another method on any super class. 

Failures and Exceptions 
The first four methods of JavaInspector shall never throw any exception: 

● If a class does not exist, the inspector should return empty. 
● If a field does not have enough permissions and the flag force is not set, the inspector 

should return empty. 
● If an attempt to write an incompatible type is made, the inspector should return empty. 

(continues on the next page) 



The invokeMethodOrConstructor throws exceptions only if the invocation is successful and the 
invoked method threw an exception.  It should throw the same exception as the invoked method 
threw.  It should return empty instead of throwing exceptions if: 

● Any argument has the wrong type. 
● The method does not have enough permissions and the flag force is not set. 

How Much Data to Fill In 
The enumerate HowMuchData controls how much data the inspector should fill in: 

● DECLARED 
○ findClass:  Only the class name and parent name 
○ fillInField:  Only the fields declared in the owner class 
○ fillInMethodsAndConstructors:  Only the methods and constructors declared in 

the owner class 
● ALL  

○ findClass:  All the parents and interfaces immediately implemented by the 
parents 

○ fillInField:  All the fields in all the parent classes, and all the fields in all the 
interfaces implemented directly by the owner class or any parent 

 
(continues on the next page) 

○ fillInMethodsAndConstructors:  All the methods and constructors in all the parent 
classes, and all the methods in all the interfaces implemented directly by the 
owner class or any parent 

 
 

● ALL_INTERFACES 
○ findClass:  ALL plus all the interfaces implemented by the interfaces in ALL 
○ fillInField:  ALL plus all the fields in interfaces implemented by the interfaces in 

ALL 
○ fillInMethodsAndConstructors:  ALL plus all the methods in interfaces 

implemented by the interfaces in ALL 

Submission and Grading 
This homework should be submitted through Github, and it is automatically graded. You can              
check your current grade at any point simply by running all the tests. The project is graded                 
through 25 tests, that will check if your homework behaves as described in this document. Each                
test is worth 4%, and you will be provided with all 25 tests. 

(continues on the next page) 



You are encouraged to make (and push) frequent commits with small changes between each.              
This ensures that: 

1. Your code is backed-up in case something happens to your computer; 
2. You can revert changes that break something without much effort; 
3. The instructors can track the progress of the class and provide hints for free for everyone                

in a timely manner; 
4. The instructors can look into your code for a particular question you ask. 

Errors and Omissions 
If you find an error or an omission, please post it on Piazza as soon as you find it. 

Hardcoding and Academic Integrity 
Any hardcoding will result in a 0% grade. Hardcoding is when you submit code that detects                
which test is being run, and simply outputs the expected result. For instance, detecting that test                
22 is running, and replacing the usual execution of your homework with            
System.out.println(“expected result”). 

The academic integrity policy described in the syllabus applies to this homework. You are              
responsible for writing all the code that you submit. We will use an automatic tool that detects                 
plagiarism on all submitted code, and we will investigate all instances where plagiarism is more               
than likely. 

Please refer to the syllabus for the full academic integrity policy. 

  



Appendix A: Inspector Interface 
// You should not change this file 
package edu.uic.cs474.hw2; 
 
import java.util.*; 
 
public interface Inspector { 
    public static final Object NULL = new Object(); 
    public static final Object SUCCESS = new Object(); 
 
    public Optional<ClassInfo> findClass(String fullyQualifiedName, HowMuchData howMuch); 
 
    public void fillInFields(ClassInfo info, HowMuchData howMuch); 
 
    public void fillInMethodsAndConstructors(ClassInfo info, HowMuchData howMuch); 
 
    public Optional<Object> readWriteField(FieldInfo field, Optional<Object> o, 
Optional<Object> newValue, boolean force); 
 
    public Optional<Object> invokeMethodOrConstructor(MethodInfo method, Optional<Object> 
receiver, LinkedList<Object> arguments, boolean force) throws Throwable; 
} 

Appendix B:  Enumerate HowMuchData 
// You should not change this file 
package edu.uic.cs474.hw2; 
 
public enum HowMuchData { 
    DECLARED, 
    ALL, 
    ALL_INTERFACES, 
} 

  



Appendix C: Helper Class ClassInfo 
// You should not change this file 
package edu.uic.cs474.hw2; 
 
import java.util.*; 
 
public class ClassInfo { 
    public String name; 
    public Optional<ClassInfo> parent; 
    public HashSet<ClassInfo> interfaces = new HashSet<>(); 
 
    public HashSet<FieldInfo> fields = new HashSet<>(); 
    public HashSet<MethodInfo> constructors = new HashSet<>(); 
    public HashSet<MethodInfo> methods = new HashSet<>(); 
 
    @Override 
    public boolean equals(Object o) { 
        if (this == o) return true; 
        if (o == null || getClass() != o.getClass()) return false; 
        ClassInfo classInfo = (ClassInfo) o; 
        return Objects.equals(name, classInfo.name) && 
                Objects.equals(parent, classInfo.parent) && 
                Objects.equals(interfaces, classInfo.interfaces) && 
                Objects.equals(fields, classInfo.fields) && 
                Objects.equals(constructors, classInfo.constructors) && 
                Objects.equals(methods, classInfo.methods); 
    } 
 
    @Override 
    public int hashCode() { 
        return Objects.hash(name, parent, interfaces, fields, constructors, methods); 
    } 
    



   @Override 
    public String toString() { 
        return "ClassInfo{" + 
                "name='" + name + '\'' + 
                ", parent=" + (parent.isPresent() ? parent.get().name : "N/A") + 
                ", interfaces=" + interfaces + 
                ", fields=" + fields + 
                ", constructors=" + constructors + 
                ", methods=" + methods + 
                '}'; 
    } 
} 

Appendix D:  Helper Class MethodInfo 
// You should not change this file 
package edu.uic.cs474.hw2; 
 
import java.util.*; 
 
public class MethodInfo { 
    public String declarerClassName; 
    public Optional<String> name; 
    public Optional<String> returnType; 
    public LinkedList<String> argumentTypes = new LinkedList<>(); 
 
    @Override 
    public boolean equals(Object o) { 
        if (this == o) return true; 
        if (o == null || getClass() != o.getClass()) return false; 
        MethodInfo that = (MethodInfo) o; 
        return Objects.equals(declarerClassName, that.declarerClassName) && 
                Objects.equals(name, that.name) && 
                Objects.equals(returnType, that.returnType) && 
                Objects.equals(argumentTypes, that.argumentTypes); 
    } 
 
     



    @Override 
    public int hashCode() { 
        return Objects.hash(declarerClassName, name, returnType, argumentTypes); 
    } 
 
    @Override 
    public String toString() { 
        return "MethodInfo{" + 
                "declarerClassName='" + declarerClassName + '\'' + 
                ", name=" + name + 
                ", returnType='" + returnType + '\'' + 
                ", argumentTypes=" + argumentTypes + 
                '}'; 
    } 
} 

Appendix E: Helper Class FieldInfo 
// You should not change this file 
package edu.uic.cs474.hw2; 
 
import java.util.Objects; 
 
public class FieldInfo { 
    public String declarerClassName; 
    public String name; 
    public String type; 
 
    @Override 
    public boolean equals(Object o) { 
        if (this == o) return true; 
        if (o == null || getClass() != o.getClass()) return false; 
        FieldInfo fieldInfo = (FieldInfo) o; 
        return Objects.equals(declarerClassName, fieldInfo.declarerClassName) && 
                Objects.equals(name, fieldInfo.name) && 
                Objects.equals(type, fieldInfo.type); 
    } 
 
    @Override 
    public int hashCode() { 
        return Objects.hash(declarerClassName, name, type); 
    } 



    @Override 
    public String toString() { 
        return "FieldInfo{" + 
                "declarerClassName='" + declarerClassName + '\'' + 
                ", name='" + name + '\'' + 
                ", type='" + type + '\'' + 
                '}'; 
    } 
} 
 
 
 
 
 
 


