
Assignment 2
CS 494 - Principles of Concurrent Programming - S20

Description
In this assignment, you will build a warehouse management utility. Your submission should
implement the following interface:

public interface Warehouse <S extends Shelf, I extends Item> {
 public S createShelf(int size);
 public I createItem(String description);
 public boolean addItems(S s, Set<I> items);
 public boolean removeItems(S s, Set<I> items);
 public boolean moveItems(S from, S to, Set<I> items);
 public Set<I> getContents();
 public Set<I> getContents(S s);
 public List<Action<S>> audit(I i);
 public List<Action<I>> audit(S s);
}
Differences between Assignment 2 and Assignment 1 are highlighted in yellow or red background.

Each operation (method) behaves as follows:

● createShelf: Creates a shelf that holds size items, and adds it to the warehouse.
● createItem: Creates a unique item that can be put on a shelf.
● addItems: Adds a set of items to the shelf s.

○ This operation either adds all the items, if the shelf has enough room for all the
items, or none.

○ For instance, attempting to add two items to a shelf that only has room for one
should not change the contents of the shelf.

○ If all the items are added, this operation returns true. If the shelf remains
unchanged, this operation returns false.

● removeItems: Removes a set of items from the shelf s.
○ This operation behaves as addItems: Either all items are removed, or the shelf

remains unchanged. The return is also similar to addItems.
○ Trying to remove an item that is not on the target shelf results in failure of that

remove operation.
● moveItems: Moves a set of items from a shelf from to another shelf to.

○ This operation behaves as addItems: Either all items are moved, or both
shelves remain unchanged. The return is also similar to addItems.

○ Trying to move items that are not on the shelf from results in failure of that
move operation.

● getContents: Gets the items in the warehouse or on a shelf s.
○ Without arguments, this operation gets all the items that are inside the

warehouse
○ With a shelf argument s, this operation gets all the items that are held by that

shelf s.
● audit: Returns an audit log that tracks items or shelves.

○ With an item argument, returns a list of all the shelves in which that item was.
■ Note that the order of the list matters
■ Items should be added to a shelf before being removed from that shelf

○ With a shelf argument, returns a list of all the items that were in that shelf, and
the order in which those items were added/removed.

■ If a add/remove/move operation moves many items at once, the order
among those items is unspecified.

■ However, all those items should be on the list after preceding operations
and before later operations.

You can assume that all operations createShelf precede the first addItems operation.

Your implementation should keep the following properties at all times:

1. getContents operations never list more items for a shelf s than s‘s capacity.
2. getContents operations never list more items for a warehouse than the sum of the sizes

of all the shelves.
3. Adding items to a shelf successfully should result in those items being listed in later

getContents operations until those items are removed.
4. Removing items from a shelf successfully should result in those items not being listed in

later getContents operations.
5. Each item is listed in one shelf at most by getContents operations.
6. Items are never “in transit” due to move operations (i.e., getContents operations not

listing items removed from the from shelf and still not added to the to shelf).
7. The current contents of any shelf can be explained by following the entries in the audit

log, by the order in which they are on the log.

Concurrency Requirements
Your implementation must maximize the parallelism between different threads that are
accessing the warehouse. In particular, it must observe the following properties:

● Concurrent read: Threads that call getContents, either on a particular shelf or on the
whole warehouse, must make progress concurrently.

● Concurrent write: Threads that change the contents of different shelves through
addItems, removeItems, or moveItems, must make progress concurrently.

● Concurrent read-write: Threads that call getContents must make progress
concurrently with threads that modify the warehouse through addItems, removeItems,
or moveItems.

Entry Point
You should change method Warehouse.createWarehouse so that it creates an instance of your
solution. You should not change any other part of the code that is provided to you.

public interface Warehouse <S extends Shelf, I extends Item> {
 public static Warehouse createWarehouse() {
 throw new Error("Not implemented");
 }
}

Due Date and Late Policy
● This assignment is due on March 7 (Saturday) by 5pm CST.
● Submissions delivered by March 8 (Sunday) by 5pm CST will have a 10% penalty.
● Submissions delivered by March 9 (Monday) by 5pm CST will have a 25% penalty.
● No submission will be accepted after March 9 past 5pm CST (Monday)

The code and date used for your submission is defined by the last commit to your git repository.

Submission and Grading
This assignment should be submitted through Github, and has an automatic grade component
of 70%. You can check your current grade at any point by submitting your code and checking
Travis. The automatic grade is determined by 7 tests, that will check if your project outputs the
expected result. Each test is worth 10%.

This assignment also has a question component, which should be completed on Blackboard.
There are three questions about your implementation, focusing on concurrency/multi-threading,
each worth 10%:

1. How does your implementation ensure that concurrent operations never deadlock?
2. How does your implementation allow concurrent addItem operations?
3. How does your implementation maximize the parallelism in the warehouse with regards

to concurrent read-write?

Bonus Points
This assignment has a total of 10% bonus points, which you can earn by using Piazza as
described in the syllabus. Your posts should be tagged with the Assignment 2 label and
non-anonymous to the instructors to count towards the bonus.

Errors and Omissions
If you find an error or an omission, please post it on Piazza as soon as you find it.

Hardcoding and Academic Integrity
Any hardcoding will result in a 0% grade. Hardcoding is when you submit code that detects
which test is being run, and simply outputs the expected result. For instance, detecting that test
22 is running, and replacing the usual execution of your submission with
System.out.println(“expected result”).

The academic integrity policy described in the syllabus applies to this assignment. You are
responsible for writing all the code that you submit. We will use an automatic tool that detects
plagiarism on all submitted code, and we will investigate all instances where plagiarism is more
than likely.

Please refer to the syllabus for the full academic integrity policy.

Change Log
● 2020/02/24 - Removed the audit functionality

